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Abstract
Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated CBAS  719 T, CBAS 732 and CBAS 
720 were isolated from leaf litter samples, collected in Espírito Santo State, Brazil, in 2008. Sequences of the 16S rRNA, 
gyrB, lepA and recA genes showed that these strains grouped with Burkholderia plantarii LMG  9035 T, Burkholderia 
gladioli LMG  2216 T and Burkholderia glumae LMG  2196 T in a clade of phytopathogenic Burkholderia species. Digital 
DNA-DNA hybridization experiments and ANI analyses demonstrated that strain CBAS  719 T represents a novel species in 
this lineage that is very closely related with B. plantarii. The genome sequence of the type strain is 7.57 Mbp and its G + C 
content is 69.01 mol%. The absence of growth on TSA medium supplemented with 3% (w/v) NaCl, citrate assimilation, 
β-galactosidase (PNPG) activity, and of lipase C14 activity differentiated strain CBAS  719 T from B. plantarii LMG  9035 T, 
its nearest phylogenetic neighbor. Its predominant fatty acid components were  C16:0,  C18:1 ω7c, cyclo-C17:0 and summed 
feature 3  (C16:1 ω7c and/or  C15:0 iso 2-OH). Based on these genotypic and phenotypic characteristics, the strains CBAS  719 T, 
CBAS 732 and CBAS 720 are classified in a novel Burkholderia species, for which the name Burkholderia perseverans sp. 
nov. is proposed. The type strain is CBAS  719 T (= LMG  31557 T =  INN12T).

Keywords Aspergillus welwitschiae · Burkholderia plantarii · Genome analysis · Sisal

The genus Burkholderia was proposed by Yabuuchi et al. 
[1] as a member of the family Burkholderiaceae [2]. This 
genus is diverse and comprises more than 100 validly named 
species in the List of Prokaryote names with Standing in 
Nomenclature (LPSN; www. bacte rio. net/ burkh older ia. html) 
[3]. Due to its phylogenetic diversity, this genus has recently 
been subdivided into Burkholderia sensu stricto (which 
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comprises species of the Burkholderia cepacia complex 
(BCC), B. pseudomallei group species and several phy-
topathogenic species) and the novel genera Paraburkholde-
ria, Caballeronia, Robbsia, Mycetohabitans and Trinickia 
[4–7]. Burkholderia species occupy different niches and may 
be isolated from plants, animals, soils and leaf litter [7–9]. 
These bacteria can be pathogens to plants and animals; how-
ever, many Burkholderia species may be beneficial, acting as 
biological control agents and plant growth promoters [8–10].

Isolation and ecology

In 2008, three leaf litter samples were collected in a sand-
bank located at Parque Estadual Paulo Cesar Vinha, Espírito 
Santo State, Brazil (20° 35′ 23″ S 40° 24′ 40″ W) [10]. This 
region is part of the Restinga ecosystem, a Brazilian coastal 
biome located in the eastern part of the country. It is charac-
terized by sandy, nutrient-poor and acidic soils with heavy 
influences from the Atlantic sea and the Atlantic forest. The 
biodiversity and biotechnological potential of the microbiota 
from this biome have been systematically studied by our 
research group [10–14]. Each sample, containing 10 g, was 
washed 15 times in running water, three times in water with 
a drop of tween 20 and two times in distilled water. Then, 
samples were mixed with 90 mL of distilled water, grinded 
for 1 min in a blender and tenfold serial dilutions were 
prepared. Aliquots of 100 µL were spread on malt extract 
agar (MEA; Acumedia) plates containing chloramphenicol 
(70 ppm). After 2 days of incubation at 28 °C, colonies were 
randomly selected and subcultured on LB medium (10 g 

tryptone, 5 g yeast extract, 10 g NaCl and 15 g agar). Pure 
cultures were maintained at − 80 °C in 40% (v/v) glycerol.

16S ribosomal RNA phylogeny

The collection included a group of 16 strains with 100% 
identical 16S rRNA gene sequences, which were selected for 
further studies. Genotyping with BOX-PCR showed that all 
strains were identical [10]. Strains CBAS  719 T, CBAS 732 
and CBAS 720 were selected because they were shown to 
produce volatile organic compounds (VOCs) with activity 
in vitro against Aspergillus welwitschiae and lowered the 
severity of bole rot of sisal (Agave sisalana) by 75–79% in 
field experiments [10]. The 16S rRNA gene sequences of 
strains CBAS  719 T, CBAS 732 and CBAS 720 were 99.5% 
identical to those of Burkholderia plantarii LMG  9035 T, 
and 99.4% identical to both Burkholderia gladioli LMG 
 2216 T and Burkholderia glumae LMG  2196 T (Fig. 1).

gyrB, lepA and recA genes phylogeny

Partial sequences of the gyrB, lepA and recA genes of strains 
CBAS  719 T, CBAS 732 and CBAS 720 were obtained using 
the method described by Spilker et al. [15]. The PCR prod-
ucts were sequenced using an AB3500 sequencer according 
to the manufacturer’s instructions (Applied Biosystems). 
Sequences were assembled and edited with Sequencher v. 
5.4.6 (Gene Codes Corporation) and were compared with 
sequences deposited in public databases using the BLAST 

Fig. 1  Maximum likelihood 
tree based with 1118 ungapped 
positions of the multiple align-
ment of the 16S rRNA gene of 
Burkholderia perseverans sp. 
nov. and related species. The 
phylogenetic analysis was per-
formed employing the Tamura-
Nei substitution model with 
Gamma distribution and Invari-
ant sites. Bootstrap analysis 
employed 1000 re-samplings; 
only bootstrap support values 
above 70% are presented at 
the nodes. Paraburkholderia 
fungorum LMG  16225 T was 
used as outgroup. The scale 
bar indicates the number of 
substitutions per site. The new 
species is presented in bold font 
(T = ex-type). GenBank acces-
sion numbers are given between 
parentheses
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program [16]. All multiple alignments and phylogenetic 
analyses with the maximum likelihood method were per-
formed using MEGA v.6.0 software [17]. In an analysis 
of combined gyrB, lepA and recA gene sequences, strains 
CBAS  719 T, CBAS 732 and CBAS 720 were in a clade with 
a 100% bootstrap support (Fig. 2) containing B. plantarii 
LMG  9035 T, B. gladioli LMG  2216 T and B. glumae LMG 
 2196 T, all phytopathogenic species. Burkholderia gladioli 
and Burkholderia glumae are basal in this clade indicating 
that B. plantarii LMG  9035 T and the taxon represented by 
the strains CBAS  719 T, CBAS 732 and CBAS 720 evolved 
more recently (Fig. 2). Similar results were also found in 
phylogenetic analyses performed for each gene separately 
(data not shown).

Genome features

The whole genome sequence of strain CBAS  719 T was 
obtained in an Illumina Hiseq platform (Macrogen) using 
the 125-bp paired-end TruSeq DNA PCR-free library kit. 
Sequencing yielded 30,766,864 reads, of which the quality 

was verified using the FastQC (v.0.11.5) program [18]. 
SPAdes (v.3.11.1) software was used for de novo assem-
bly of the reads [19]. Then, the contigs were ordered and 
extended into scaffolds using the software CONTIGuator 
(v.2.7.4) [20] and the B. plantarii LMG  9035 T (accession 
number GCA_001411805.1) genome sequence was used 
as reference. The gap-closure procedures were conducted 
using the tool FGAP (v.1.8.1) [21], BLASTn [16] and CLC 
Genomics Workbench (v.7.0) (Qiagen Inc.) respectively. The 
draft genome assembly is available in the GenBank database 
under accession numbers CP045094—CP045093.

The G + C content of strain CBAS  719 T as calculated 
from its genome was 69.01 mol%, a value similar to that of 
its closest neighboring species (Table 1). Digital DNA–DNA 
hybridization (dDDH) and average nucleotide identity (ANI) 
values were calculated using the Genome-to-Genome Dis-
tance Calculator 2.1 provided by the Leibniz Institute DSMZ 
website (http:// ggdc. dsmz. de/ distc alc2. php) and the JSpe-
ciesWS web service (http:// jspec ies. riboh ost. com/ jspec 
iesws/# analy se) [22] with the recommended parameters and/
or default settings, respectively. The dDDH value between 
strain CBAS  719 T and B. plantarii LMG  9035 T was 60.5% 

Fig. 2  Maximum likelihood tree based on 1524 ungapped positions 
of the combined multiple alignment of gyrB, lepA and recA genes 
from B. perseverans sp. nov. and phylogenetically related species of 
the genus Burkholderia. The phylogenetic analysis was performed 
using the Tamura 3-parameter substitution model with Gamma dis-
tribution. Bootstrap analysis employed 1000 re-samplings; only boot-

strap support values above 70% are presented at the nodes. Parabur-
kholderia fungorum LMG  16225 T was used as outgroup. The scale 
bar indicates the number of substitutions per site. The new species is 
presented in bold font (T = ex-type). GenBank accession numbers are 
given between parentheses (gyrB = green, lepA = blue, recA = red)

http://ggdc.dsmz.de/distcalc2.php
http://jspecies.ribohost.com/jspeciesws/#analyse
http://jspecies.ribohost.com/jspeciesws/#analyse
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(with 57.7–63.3% as confidence interval); the corresponding 
ANI value was 94.8%. Both values were near, but below, 
the thresholds of 70% dDDH [23, 24] and 95% ANI [24] for 
bacterial species delineation, indicating that strain CBAS 
 719 T represents a distinct species (Table 1).

Physiology and chemotaxonomy

Phenotypic analyses of strains CBAS  719 T, CBAS 732 and 
CBAS 720 and of the type and reference strains of B. plan-
tarii, B. gladioli and B. glumae (Table 2) were performed 
after cultivation of cells on tryptone soya agar (TSA, Oxoid) 
at 28 °C unless indicated otherwise. Cell morphology and 
motility were observed by phase-contrast microscopy. Oxi-
dase activity was detected by immersion of cells in 1% 
N,N,N’,N’-tetramethyl p-phenylenediamine solution and 
catalase activity was determined by bubble formation after 
flooding colonies with 10%  H2O2. Lipase activity was deter-
mined according to the method described by Sierra [26]. 
Growth on MacConkey agar was observed after 48 h of 
incubation at 28 °C. Starch hydrolysis was observed after 
48 h of incubation at 28 °C in TSA supplemented with 2% 
starch. DNase activity was assessed after 48 h of incuba-
tion at 28 °C on DNase test agar (BD Difco), according 
to the method of Jeffries et al. [27]. Casein hydrolysis was 
determined after 48 h of incubation at 28 °C on TSA plates 
supplemented with 1.3% skimmed milk, through the obser-
vation of clear haloes around colonies. Growth on cetrimide 
and blood agar medium was observed after 48 h of incuba-
tion at 28 °C. Growth on medium with tween 20, 40, 60 and 
80 was observed after 24 h of incubation at 28 °C. Nitrate 
reduction was determined on TSA medium supplemented 
with 10 mM  KNO3. Growth was tested at 28 °C in nutrient 
broth (BD Difco) at pH 4–9 using appropriate biological 
buffers (acetate, citrate/Na2HPO4, phosphate buffer and Tris/
HCl).

Growth on TSA was tested at 4, 15, 20, 28, 37, 40, 42 
and 45 °C (aerobic conditions), and at 28 °C in anaerobic 
conditions using the Anaero Pack system (Mitsubishi Gas 
Chemicals). Growth in tryptone soya broth was tested in the 
presence of 0–10.0% (w/v) NaCl at intervals of 1.0% units. 

Other biochemical tests were performed by inoculating in 
API 20NE and API ZYM strips (bioMérieux) according to 
the manufacturer’s instructions and incubating for 48 h at 
28 °C or for 4 h at 28 °C, respectively. The results of the 
biochemical analyses, and in particular lipase  C14 activity, 
differentiated the novel taxon from B. plantarii LMG  9035 T 
(Table 2). In addition, although variable reactions were 
observed in the novel taxon, the type strain CBAS  719 T 
could further be distinguished from the B. plantarii–type 
strain by the absence of growth on TSA medium supple-
mented with 3% (w/v) NaCl, citrate assimilation and of 
β-galactosidase (PNPG) activity.

Whole-cell fatty acid methyl esters were extracted accord-
ing to the MIDI protocol (http:// www. young in. com/ appli cat-
ion/ AN- 0505- 0002EN. pdf). After a 24-h incubation period 
at 28 °C on trypticase soya broth (BD Difco) supplemented 
with 1.5% (w/v) bacto™ agar (BD Difco), a loopful of cells 
was harvested and fatty acid methyl esters were prepared. 
The profiles were generated using an Agilent Technologies 
6890 N gas chromatograph and identified and clustered 
using the Microbial Identification System software and 
MIDI TSBA database v.5.0. The analysis revealed that the 
most abundant fatty acids in the strains CBAS  719 T, CBAS 
732 and CBAS 720 and in the B. plantarii, B. gladioli and 
B. glumae reference strains were  C16:0,  C18:1 ω7c, cyclo-C17:0 
and summed feature 3  (C16:1 ω7c and/or  C15:0 iso 2-OH) 
(Table S1). The fatty acid components that represented 
more than 1% of the total were as follows:  C12:0,  C13:1,  C14:0, 
 C16:0,  C18:1 ω7c, cyclo-C17:0, cyclo-C19:0 ω8c,  C16:0 3-OH, 
 C18:1 2-OH, summed feature 2  (C12:0 aldehyde and/or  C14:0 
3-OH and/or  C16:1 iso) and summed feature 3  (C16:1 ω7c 
and/or  C15:0 iso 2-OH). The most discriminating fatty acids 
between the novel taxon represented by the strains CBAS 
 719 T, CBAS 732 and CBAS 720 and B. plantarii were  C13:1, 
 C18:1 ω7c, cyclo-C17:0, cyclo-C19:0 ω8c and summed feature 
3 (Table S1). The overall fatty acid profile of the new taxon 
supports its placement in the genus Burkholderia [1].

Strains were cultured twice on nutrient agar prior to 
MALDI-TOF MS analysis. Cell pellets and extracts for 
MALDI-TOF MS were prepared as described by Wieme 
et al. [25]. Cell extracts (1 µL) were spotted in duplicate 
on a Bruker target plate. Subsequently, the spots were 

Table 1  dDDH and ANI values between the genome of B. persever-
ans CBAS  719 T as query genome and that of closely related species. 
ANI values were calculated using JSpecies with the ANIb algorithm 
(average nucleotide identity based on BLAST). Numbers between 

parentheses after ANI values are percentages of conserved aligned 
DNA between two genomes; numbers between parentheses after 
dDDH values are the confidence intervals

Query genome Reference genome Bioproject NCBI number Size (mb) G + C (mol %) dDDH (%) ANI (%)

B. perseverans CBAS  719 T B. perseverans CBAS  719 T PRJNA573627 7.57 69.01 100 100
B. perseverans CBAS  719 T B. plantarii LMG  9035 T PRJNA237833 8.08 68.55 60.5 (57.7–63.3) 94.8 (75.9)
B. perseverans CBAS  719 T B. glumae LMG  2196 T PRJNA259679 6.82 68.18 44.8 (42.2–47.3) 91.2 (53.8)
B. perseverans CBAS  719 T B. gladioli LMG  2216 T PRJNA238809 8.90 67.63 29.6 (27.3–32.1) 85.1 (53.9)

http://www.youngin.com/application/AN-0505-0002EN.pdf
http://www.youngin.com/application/AN-0505-0002EN.pdf
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overlaid with 1 µL of matrix solution, which consisted 
of 10 mg α-cyano-4-hydroxycinnamic acid dissolved in 
1 mL acetonitrile:trifluoroacetic acid:Milli-Q (50:2.5:47.5) 
water-solvent. Prior to the analysis, the mass spectrometer 
was externally calibrated using the Bacterial Test Stand-
ard (Bruker Daltonik, Germany). Samples were analyzed 
automatically using the Bruker Microflex™ LT/SH smart 
instrument (flexControl version 3.4). The flexAnalysis 
Batch Process (Bruker Daltonik, Germany) was used to 
convert the mass spectra into text files that were subse-
quently used as input files in the BioNumerics 7.6.3 soft-
ware package (Applied Maths, Belgium). Curve-based data 
analysis of mass spectra was performed using the Pearson 
product-moment correlation coefficient and the UPGMA 
(Unweighted Pair Group method with Arithmetic Mean) 
cluster algorithm. MALDI-TOF MS analysis revealed 
that the isolates CBAS  719 T, CBAS 732 and CBAS 720 
displayed similar mass spectra that differed from those of 
closely related species, confirming their unique taxonomic 
position (Fig. 3).

The phenotypic, chemotaxonomic and genomic data pre-
sented in this study demonstrated that strains CBAS  719 T, 
CBAS 732 and CBAS 720 represent a novel species in the 
genus Burkholderia that can be distinguished from its near-
est phylogenetic neighbors, both phenotypically and geno-
typically. This bacterium is closely related to B. plantarii, 
B. glumae and B. gladioli, which are pathogens of various 
plants including Oryza sativa, Gladiolus sp. and Vanda sp. 
[28]. The novel species did not cause disease on sisal and 
onion, both monocotyledon plant species [10].

Antagonistic activity against plant 
pathogens

The effect of volatile organic compounds (VOCs) produced 
by different strains of the newly described Burkholderia spe-
cies on mycelial growth of plant pathogens was evaluated 
in Petri plates split into two compartments, both containing 
the MEA medium. A 100-μL aliquot of suspension of each 
bacterial strain adjusted to  OD600 = 0.05 was spread on one 
of the compartments and a 5-mm diam mycelial disc of each 
tested plant pathogen, including Aspergillus welwitschiae 
131, Moniliophthora perniciosa CEPEC/CEPLAC 2421 and 
Phytophthora palmivora CEPEC/CEPLAC 1913, was placed 
at the centre of opposite compartments in the same plate. 

Table 2  Differential biochemical characteristics of B. perseverans 
sp. nov. and phylogenetically related species. Species: (1) B. perse-
verans sp. nov. CBAS  719 T, CBAS 732 and CBAS 720; (2) B. plan-
tarii LMG  9035  T and LMG 10,911; (3) B. gladioli LMG  2216  T, 
LMG 11,626 and LMG 18,920; (4) B. glumae LMG  2196  T, LMG 
19,583 and R-21928. All data were obtained in the present study. + , 
positive; w, weakly positive; v + , variable among strains of the spe-
cies but the type strain has the ability; v − , variable among strains of 
the species but the type strain does not have the ability; vw, variable 
among strains but weak in type strain; w − , weak in some strains but 
negative in type strain; − , negative. Culture medium: MacConkey 
Agar, + fermented lactose, − lactose is not fermented, v + variable 
among strains of the species but the type strain fermented lactose, 
v − variable among strains of the species but the type strain lactose 
is not fermented; blood agar, + causes hemolysis, − does not cause 
hemolysis, v + variable among strains of the species but the type 
strain causes hemolysis, v − variable among strains of the species but 
the type strain does not cause hemolysis

Characteristic 1 2 3 4

Growth at:
  40 °C w vw  +  + 
  pH 8  − v − w w
  3% NaCl v −  + v +  + 
  4% NaCl  − v − v + w
  5% NaCl  − v − w vw
  6% NaCl  −  − vw  − 
  7% NaCl  −  − vw  − 
  Tween 20  +  +  +  + 
  Tween 40  +  +  +  + 
  Tween 60  +  +  +  + 
  Tween 80  +  +  +  + 

Culture medium:
  Blood agar  −  −  − v − 
  Cetrimide agar  −  − vw  − 
  MacConkey agar  −  −  − v − 
  TSA + 10 mM  KNO3  +  +  − v + 

Hydrolysis of:
  Casein v +  + v + v − 
  Starch v +  + v + v + 

API 20NE:
  Esculin hydrolysis  −  −  − v − 
  Gelatin liquefaction  +  + v +  + 
  Nitrate reduction  +  + v − v + 
  PNPG β-galactosidase v −  + v +  + 

Assimilation of:
  Adipate v −  − v +  − 
  Caprate  − v −  +  − 
  Citrate v −  +  +  + 
  Malate  +  +  + v + 
  Phenylacetate  −  − v +  − 

API ZYM:
  Alkaline phosphatase  +  +  + v + 
  Butyrate esterase  (C4)  +  +  + v − 
  β-galactosidase  −  −  − v − 
  β-glucosidase  −  −  − v − 

Table 2  (continued)

Characteristic 1 2 3 4

  Myristate lipase  (C14)  −  +  +  + 
  Valine arylamidase  − v − v + v − 
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Each combination of bacterial strain and plant pathogen was 
tested separately in the same experiment and the pathogens 
without the bacterial treatments served as controls. Plates 
were sealed with parafilm and incubated at 28 °C for 8 days. 
Mycelial growth was measured daily and the average inhi-
bition in relation to the control was determined. Analysis 
of variance and mean separation with Tukey’s test at 5% 

probability were done by using the R software [29]. The 
experiment was arranged in a completely randomized design 
with four replicates and was performed two times with sim-
ilar results. The three different strains of the novel Burk-
holderia species produced VOCs that significantly inhibited 
mycelial growth of A. welwitschiae, M. perniciosa and P. 
palmivora (Fig. 4), which represent diverse groups of plant 

Fig. 3  Curve-based cluster anal-
ysis using the Pearson product-
moment correlation coefficient 
and the UPGMA cluster algo-
rithm of mass spectra generated 
from B. perseverans sp. nov. 
and the type strains of its closest 
phylogenetic neighbors. The 
mass spectra were obtained in 
the MALDI-TOF MS analysis 
with cell extracts prepared from 
pelleted bacterial cells

Fig. 4  Inhibition of mycelial growth of diverse plant pathogens by 
three strains of B. perseverans sp. nov. The experiment was done in 
Petri plates split into two compartments containing the MEA medium 
and the controls were the pathogens growing without bacterial strains 
on the other compartment. Plates were incubated for 8 days and the 

average percentage of inhibition in relation to the respective con-
trol was determined. Different letters indicate significant differences 
according to Tukey’s test (p ≤ 0.05). Error bars represent the standard 
error of the means. Comparisons should be done only among differ-
ent bacterial strains for the same plant pathogen
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pathogens. The in vitro inhibition in relation their respec-
tive controls varied from 70 to 78% against A. welwitschiae 
and from 80 to 84% against M. perniciosa and P. palmivora 
(Fig. 4).

We have previously shown in in vitro and field experi-
ments that this bacterium can be used as a biological con-
trol agent that produces volatile and diffusible organic com-
pounds that are able to inhibit mycelial growth and spore 
germination of A. welwitschiae, which is the main etiologi-
cal agent of the bole rot disease of sisal [10]. This crop pos-
sesses great socio-economic importance since it is cultivated 
employing familiar labor and Brazil is the main producer 
[30, 31].

Description of Burkholderia perseverans sp. 
nov.

Burkholderia perseverans sp. nov. (per.se.ve’rans, L. fem. 
part. pres. as reference to the environment from which this 
species was isolated, characterized by adverse conditions 
including low humidity, high temperatures and poor and 
acidic sandy soils). Gram-negative, aerobic, motile, non-
spore-forming rods, about 1.0–3.0 µm long. Colonies were 
round, with smooth margins, a low convex elevation, and a 
non-pigmented and translucent appearance, and are 1 mm 
in diameter after 72 h of growth on TSA at 28 °C. Growth 
occurred well at 15–37 °C and weakly at 40 °C, at pH 6–7 
at 28 °C and with 0–3% (variable; type strain negative) 
(w/v) NaCl. It grew on MacConkey agar, but lactose was 
not fermented. It grew on blood agar, but did not produce 
hemolysis. It grew on medium with tween 20, 40, 60 and 
80, and on TSA with 10 mM of  KNO3. It did not grow on 
cetrimide agar. Casein and starch hydrolysis were strain 
dependent but the type strain was positive. It has no DNase 
activity. Catalase and oxidase activities were observed. In 
API 20NE strips, nitrate was reduced, and glucose, arab-
inose, mannose, mannitol, N-acetylglucosamine, gluconate 
and malate were assimilated, but not maltose, phenylacetate, 
caprate, adipate (variable; type strain negative) or citrate 
(variable; type strain negative). It is negative for fermenta-
tion of glucose, activities of tryptophanase, arginine dihy-
drolase, urease, β-galactosidase (PNPG) (variable; type 
strain negative) and hydrolysis of aesculin, but positive for 
gelatin liquefaction. When tested by using API ZYM strips, 
activities of the following enzymes were positive: alkaline 
and acid phospatases, leucyl arylamidase, phosphoamidase, 
C4 lipase and C8 lipase; activities were negative for C14 
lipase, valine and cystine arylamidases, trypsin, chymot-
rypsin, α-galactosidase, β-galactosidase, β-glucuronidase, 
α-glucosidase, α-glucosidase, N-acetyl-β-glucosaminidase, 
α- mannosidase and α-fucosidase. The most abundant fatty 

acids were  C16:0,  C18:1 ω7c, cyclo-C17:0 and summed feature 
3  (C16:1 ω7c and/or  C15:0 iso 2-OH).

Protologue

The type strain, CBAS  719 T (= LMG  31557 T =  INN12T), 
was isolated from leaf litter samples at Espírito Santo prov-
ince, Brazil, in 2008. The DNA G + C content of the type 
strain was 69.01 mol%. The draft genome sequence of type 
strain is 7.57 Mbp consisting of two chromosomes, which 
have been deposited in DDBJ/EMBL/GenBank under acces-
sion numbers CP045094—CP045093.

Abbreviations ANI: Average nucleotide identity; Bcc: Burkholderia 
cepacia Complex; dDDH: Digital DNA-DNA hybridization; ML: Max-
imum likelihood; MALDI-TOF MS: Matrix-Assisted Laser Desorption/
Ionisation Time-of-Flight Mass Spectrometry
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